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ABSTRACT Behavioral and neurophysiological studies
suggest that skill learning can be mediated by discrete,
experience-driven changes within specific neural representa-
tions subserving the performance of the trained task. We have
shown that a few minutes of daily practice on a sequential
finger opposition task induced large, incremental perfor-
mance gains over a few weeks of training. These gains did not
generalize to the contralateral hand nor to a matched se-
quence of identical component movements, suggesting that a
lateralized representation of the learned sequence of move-
ments evolved through practice. This interpretation was sup-
ported by functional MRI data showing that a more extensive
representation of the trained sequence emerged in primary
motor cortex after 3 weeks of training. The imaging data,
however, also indicated important changes occurring in pri-
mary motor cortex during the initial scanning sessions, which
we proposed may ref lect the setting up of a task-specific motor
processing routine. Here we provide behavioral and functional
MRI data on experience-dependent changes induced by a
limited amount of repetitions within the first imaging session.
We show that this limited training experience can be sufficient
to trigger performance gains that require time to become
evident. We propose that skilled motor performance is ac-
quired in several stages: “fast” learning, an initial, within-
session improvement phase, followed by a period of consoli-
dation of several hours duration, and then “slow” learning,
consisting of delayed, incremental gains in performance
emerging after continued practice. This time course may
ref lect basic mechanisms of neuronal plasticity in the adult
brain that subserve the acquisition and retention of many
different skills.

The performance of many tasks improves, throughout life,
with repetition and practice. Even in adulthood simple tasks
such as reaching to a target or rapidly and accurately tapping
a short sequence of finger movements, which appear, when
mastered, to be effortlessly performed, often require extensive
training before skilled performance develops. What changes
occur in the adult brain when a new skill is acquired through
practice? When, and after how much practice, do these
changes occur? Functional reorganization of adult mammalian
sensory and motor cortical representations has been found to
occur in many different animal models of brain plasticity in the
last two decades, advancing the idea that throughout life the
functional properties of central nervous system neurons, as
well as the neural circuitry within different brain areas, are
malleable and retain a functionally significant degree of plas-
ticity (e.g., refs. 1–4). These representational changes have

been shown to be induced not only in response to lesions of
peripheral or central sensory input or motor output pathways
but also, in normal individuals, as a result of practice and
experience. The advent of new brain imaging techniques,
especially functional MRI (fMRI) (5), which allows repeated
mapping of cortical representations as a consequence of
long-term practice, provides a way to examine over an ex-
tended time frame the neurobiological correlates of skill
learning in the adult human brain.

In this paper we briefly outline two characteristics of skill
learning—the specificity and the time course of learning—
which, we propose, can provide important constraints on the
neural locus and substrates of adult skill learning. By using the
learning of sequential finger movements as the main experi-
mental paradigm, we review recent findings, mainly from our
own work, suggesting that: (i) the acquisition and retention of
motor skills may result in significant experience-related reor-
ganization within specific motor cortical representations in the
adult human brain; and (ii) these representational changes
occur in several stages and are characterized by a distinct time
course. We review our fMRI and behavioral data (6) and
recent experimental data (7) from monkeys trained to perform
complex motor tasks to demonstrate that long-term training
results in highly specific skilled motor performance, paralleled
by the emergence of a specific, more extensive representation
of a trained sequence of movements in the contralateral
primary motor cortex (M1). We then present fMRI as well as
behavioral evidence for an important intermediate stage in the
acquisition of the skill that is set in motion by a few minutes
of practice and continues to evolve after practice has ended.
This stage presumably is subserved by neuronal processes that
require time to become effective. These processes may under-
lie the consolidation of motor experience and thus provide a
basis for the long-term memory of the skill. Further, they may
be related to similar processes that have been described in
adult human perceptual skill learning (8, 9). The finding that
a similar time course characterizes the learning both of
different types of motor skills and of different perceptual skills
lends support to the idea that the time course of skill learning
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is determined by the time constants of a limited repertoire of
basic neuronal mechanisms of plasticity subserving procedural
memory throughout the adult cortex (10, 11).

Characteristics of Skill Learning

Skills constitute one of two distinct, broad categories of
memory (12, 13). Although different taxonomies exist, the
dichotomy accounts for deficits of fact and event memories
(“what,” declarative knowledge) on the one hand, and the
preservation of skills and habits (“how to,” procedural knowl-
edge) on the other, in individuals and nonhuman primates with
focal lesions to medial temporal lobe structures (12–15). Many
instances of skill learning, both perceptual and motor, are
specific for basic parameters of the training experience; that is,
learning can be strongly dependent on simple physical at-
tributes of the stimulus presented in training a perceptual task
(e.g., refs. 16–18) or on factors such as the specific effector
organs’ positions, trajectories and sequence of trajectories
experienced in motor training (e.g., refs. 6 and 19–21). For
example, training to perform an arm movement aimed at a
specific target location against a specific perturbation resulted
in learning to compensate for the perturbation in the trained
part of the workspace but showed little generalization to the
rest of the workspace (19). Similarly, training to overcome a
specific perturbation did not generalize to overcoming an
identical perturbation in the orthogonal direction (20).

There is considerable anatomical and physiological evidence
for a hierarchical organization of information processing in
sensory and motor systems in the mammalian brain, such that
many physical parameters of a sensory input, or a motor
output, are selectively represented only in specific processing
stages. The specificity of learning for a given parameter of the
training experience implies, therefore, that only a discrete part
(or subset of neurons) within a processing stream—that
wherein the parameter is differentially represented—has un-
dergone learning related changes. At a level of processing in
which neurons respond invariantly, one would expect learning
to generalize for that particular parameter. Thus, the finding
of specificity in the learning of a given skill has been used to
generate predictions on the possible neuronal loci and type of
representations affected by the training experience (6, 16–19,
21–24). This is not to say that all skills are specific for low-level
parameters of the training experience: indeed, one would
predict otherwise whenever the relevant aspects of a task are
represented at higher levels within the processing stream (25).
Nevertheless, in many instances the degree of specificity has
indicated discrete changes in low-level representations as an
important locus of learning (25). This interpretation of the
human behavioral data is supported by experimental animal
studies that have revealed that the details of the representation
of the sensory input in low-level processing areas engaged in
the performance of a given sensory discrimination task change,
so as to reflect, by evolving improved and enlarged represen-
tations, the specific behavioral experiences of the animals
under study (26–29). Similarly, motor representations have
been shown to undergo experience-specific reorganization
after long-term training (7), whereas cortical representational
maps, often on a much shorter time scale, have been found to
be altered by manipulations of their sensory inputs (1, 2) or
motor outputs (3, 30).

An important difference between declarative and proce-
dural memory is the time course of learning. Declarative
learning can be very fast and may take place even after a single
event (13, 31). Procedural learning, in contrast, is slow and
often requires many repetitions, usually over several training
sessions, to evolve (12, 31). Thus, one may remember the
contents of a book after a single reading but the skills of
reading evolve over multiple practice sessions and require
many repetitions to become established.

Several recent studies have examined the time course of
experience-dependent perceptual learning (8, 9, 32–34). In
these studies, adult individuals were found to gain an increase
in perceptual sensitivity when given practice in basic sensory
discrimination tasks. These studies indicate that improved
perceptual performance often evolves in two distinct stages
(8): first, a fast within-session improvement that can be
induced by a limited number of trials on a time scale of minutes
(“fast learning”), and second, slowly evolving, incremental
performance gains, triggered by practice but taking hours to
become effective (“slow learning”). In many instances, most
gains in performance evolved in a latent manner not during,
but rather a minimum of 6–8 hr after training, that is, between
sessions (8, 33–35). Improvements in performance continued
to develop over the course of 5–10 daily practice sessions,
spaced 1 to 3 days apart, before nearing asymptotic perfor-
mance. The skill then was retained for months and years (8).
Because of the long-term retention and by analogy to the time
course described in several paradigms of developmental plas-
ticity (36, 37), the latent phase in human skill learning is
thought to reflect a process of consolidation of experience-
dependent changes in the adult cortex that is triggered by
training but continues to evolve after the training session has
ended (8). Furthermore, it was proposed that fast learning
reflects the setting up of a task-specific processing routine for
solving the perceptual problem whereby those representations
that are relevant for task performance are selected. Slow
learning, on the other hand, is thought to reflect ongoing,
perhaps structural, modifications of basic perceptual modules
within the selected representations (8, 25, 32, 38).

Recent studies suggest that a similar time course may
characterize the acquisition of some motor skills by human
adults (6, 20, 39). Studies conducted in the early decades of this
century have described a latent consolidation phase in per-
ceptuomotor tasks under the term reminiscence (see ref. 40).
In the monkey, fast, within-session learning, as well as large
incremental gains in performance over weeks of daily training
sessions—“slow” learning—have been described in both per-
ceptual and motor skill learning paradigms (7, 27, 29). The
monkey data further suggest that the long-term changes that
can be induced in different brain areas by the learning of motor
(7, 41) and perceptual skills (29) may be subserved by similar
mechanisms of plasticity. Although the data are limited by the
small number of studies and the different time windows
examined in each of these studies, the results lend support to
the idea that although the nature of the practice-dependent
cortical representational changes are determined by the spe-
cifics of the training experience, the time course of skill
learning may be determined by the time constants of basic
mechanisms of neuronal plasticity irrespective of the locus
of plasticity.

“Slow” Learning and the Long-Term Reorganization of M1

The learning of many motor skills involves the formation of
novel sequences of muscle activity and the reconstruction of
existing muscle control architectures (3, 41, 42). A hallmark of
such learning is improved speed of motor execution without
reciprocal deterioration in accuracy (43), which indicates the
acquisition of a new capability of the motor system rather than
functional adaptation within the limits of a pre-existing motor
gain control mechanism (44). In recent years, the learning of
sequential finger movements—related to skills such as writing,
typing, or playing musical instruments—has become an im-
portant paradigm for the study of the acquisition of motor
skills by using imaging techniques (45–52). These studies
however, have been confined to relatively short time intervals
and were not designed to look at the effects of long-term
training. Also, many of these studies were concerned not only
with the issue of how the performance of a known sequence of
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movements becomes fast and accurate through practice (42–
44), but also with the issue of how declarative knowledge of a
given sequence, embedded in the task unknown to the subject,
is acquired through motor performance (45, 46, 49).

To investigate the effects of long-term training on the
performance of a given sequence of movements, we recently
have used a simple sequential finger opposition task in which
the effects of training in young, healthy adults could be tracked
over several weeks by using both behavioral measurements and
functional brain imaging (6). In this task, subjects were in-
structed to oppose the fingers of the nondominant hand to the
thumb in one of two given sequences (Fig. 1A). The sequences
were composed of five component movements and their
mirror-reversed (tapped back to front) counterparts. Subjects
were required to tap each sequence, with no visual feedback,
as accurately and rapidly as possible. Speed and accuracy were
independently scored. The results for speed are reproduced in
Fig. 1 B–D. Although initial performance of the two se-
quences, in terms of speed and accuracy, did not differ (Fig. 1
B and C), 10–20 min of daily practice during which subjects

were instructed to repeatedly tap a given sequence (the other
sequence served as the unpracticed control) in a rapid self-
paced and accurate manner induced large gains in perfor-
mance. The speed at which the trained sequence could be
performed increased across consecutive sessions, nearing as-
ymptote after about 3 weeks of training, with more than
doubling of the initial rate (Fig. 1B) and a concurrent gain in
accuracy (6). This improvement was specific to the trained
hand, with no significant transfer to the untrained hand (Fig.
1D). Moreover, the effects of training did not generalize to the
performance of the control sequence (Fig. 1C). These behav-
ioral results suggested that a specific, highly effective repre-
sentation of the trained sequence of movements (rather than
a representation of the individual component opposition
movements) had developed as a function of training.

We conjectured that a strongly lateralized representation of
finger movements—one in which a discrete population of
neurons would encode the movements of one hand exclusive-
ly—would be a likely locus for this learning-related plasticity.
To test this possibility, a long-term functional brain imaging
study of M1 was undertaken (6). We focused on M1 because
it contains a well-lateralized representation of finger move-
ments; the cerebellum, which also contains lateralized repre-
sentations of the hand, has been found to be less active with
practice on a given sequence, even within the time frame of a
single session (47, 48, 50, 52). Moreover, M1 has been indicated
by studies in adult monkeys as a locus of manual skill learning
(7, 53), and it is thought to be important in the initiation of
voluntary motor actions, especially those associated with fine
manipulative abilities (54). Finally, we considered a possible
analogy to the results of several basic perceptual tasks in which
primary cortical representations were shown to reorganize as
a function of training and learning (2).

In the imaging study, six young adults were scanned once a
week for 4–6 consecutive weeks—before, and then in parallel
to training with one of the above finger opposition sequences,
the other serving as the untrained control (6). The motor
activity-evoked signal changes were measured by using a 4-T
MRI system with a gradient echo, echo planar imaging se-
quence sensitive to local blood-oxygenation-level-dependent
contrast. Each session consisted of 6–10 experimental sets with
each set made of two performance intervals of 20-sec duration
each (X1 and X2, respectively) separated by 40 sec of rest. In
a set, either one sequence of movements was repeated in both
performance intervals (X1 and X2) or a different sequence
was performed in each activation interval assigned in a random
but balanced manner. During all scanning sessions, both the
trained and the control sequence were performed at a fixed,
comfortable rate of 2 Hz, paced by the magnetic field gradient
switch noise. Thus both rate and component movements were
matched, and the only difference between sequences during
scanning was the difference in practice histories. Data analysis
consisted of determining those pixels in which signal intensity
changed during each performance interval of a set, relative to
the level at rest, and then comparing the two statistical maps
generated from each set.

In the first scanning session, performed before any training
was given, a comparable extent of the contralateral M1 was
activated by the execution of both sequences. However, by
session 4, which corresponded to 3 weeks of daily practice on
the designated training sequence, and in all subsequent ses-
sions, the extent of activation evoked by the trained sequence
in M1 was significantly larger compared with the extent of
activation evoked by the performance of the control, untrained
sequence (Fig. 2 a and b). The area of evoked response in M1
for the trained sequence was larger in extent irrespective of the
order in which the sequences were performed in the set. As in
the initial, naive state, the activation in M1 appeared somewhat
patchy (but to a lesser degree) and it did not extend beyond the
hand representation itself, as indicated by control experiments,

FIG. 1. The effects of long-term practice on sequence perfor-
mance. (A) The two sequences of finger-to-thumb opposition move-
ments used in our study (6). In sequence A the order of finger
movements was 4,1,3,2,4 (numbering the fingers from index to little),
and in sequence B the order was 4,2,3,1,4 as indicated by the arrows
(matched, mirror-reversed sequences). Practice consisted of tapping
the designated training sequence as fast and accurately as possible for
10–20 min a day, a few minutes at a time separated by half-minute
rests. (B) Learning curves, trained sequence. Each curve (symbol)
depicts the performance of a single subject as a function of time.
Pre-training (time point 0), day 3 and 10 of training, and performance
on the day of the subsequent weekly imaging sessions is shown for 10
subjects. The number of complete sequences performed in a 30-sec test
interval (rate) increased from 17.4 6 3.9 to 38.4 6 5.8 (mean, SD; week
0 and 5 weeks of training, respectively; paired t test, P , 0.001).
Accuracy improved, too, with the number of sequences that contained
errors decreasing from a mean of 2.4 6 0.9 to 0.5 6 0.5 (paired t test,
P , 0.001). (C) No significant improvement for the control sequence
(performance rate 18.1 6 3.7 to 19.4 6 4.2; 0 and 5 weeks of training,
respectively; paired t test, not significant). (D) There was little or no
transfer of the learning effect to the contralateral (dominant) hand.
Trained (T) vs. control (C) sequence performance rates, at week 5,
were 22.3 6 2.9 and 19.8 6 4.0, respectively (paired t test, P 5 0.097).
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in which single-digit and wrist extension-flexion movements, as
well as eye (orbicularis oculi) closure were mapped. These
results suggest that as the skill was acquired no significant
expansion of the total hand representation area occurred.
Indeed, the differential activation was accounted for by a
subpopulation of pixels, in the hand area, that showed a
significant response to the trained sequence, but little or no
response to the performance of the untrained sequence (6).
The more extensive blood-oxygenation-level-dependent signal
evoked in M1 by the trained compared with the untrained
sequence, persisted weeks after training was discontinued (Fig.
2 c and d). There was also no significant decrease in perfor-
mance and, in fact, 1 year after training was stopped there was
still significant retention of the skill.

These imaging data suggest that long-term practice results in
a gradually evolving, specific, and more extensive representa-
tion of the trained sequence of movements in M1. The results
are compatible with the idea that motor practice induces the
recruitment of additional M1 units into a local network
specifically representing the trained motor sequence (6). This
interpretation is in agreement with the recent finding, in
monkeys, of practice-dependent changes in the functional
topography of M1 (7). Nudo et al. (7) found that after a few
weeks of training on a task, which developed skilled manipu-
lation, the evoked-movement digit representation, as well as
the representation of task-related movement combinations in
M1 gradually were expanded. A second important insight
gained from our human imaging data is the indication that M1
may code not just single movements, but rather complex

movement sequences, including those acquired in adulthood.
This indication, too, is supported by the finding in monkeys
that following long-term practice, co-contracting muscles used
in the task come to be represented together in motor cortex,
with those movement combinations that were used more
frequently in training, more extensively corepresented (7).

An almost universal finding in animal studies of training-
dependent cortical changes is the expansion, through recruit-
ment of additional units, of the specific representation of the
input or output that the monkey experiences (3, 30, 53) and,
to a much larger degree, of the representation of inputs that
are crucial to the performance of a behaviorally meaningful
trained task (2, 7, 27–29). The finding of an enlargement of a
sensory-motor representation of a body part in the setting of
skill acquisition poses the question of how extensive such an
enlargement can be. It suggests that the learning of a sequence
of movements can in some instances interfere with or limit the
learning of other sequences, or even result in an expansion of
the representation of a body part, even at the cost of the
representation of other, less used parts. Interference with a
newly acquired skill may be possible, but only within a very
limited time window (20, 39). The specificity of skill learning
implies that different subpopulations of neurons within a
representational domain participate in the representation of
different task conditions, which in turn suggests a potential for
many parallel skills within a given representation (38). Nev-
ertheless, Pascual-Leone et al. (55) have found that in Braille
readers, the sensory-motor cortical representation of the index
finger used in reading was significantly larger, compared both
to that of the nondominant index finger in those subjects and
to that of the dominant index finger of non-Braille reading
control subjects. Similarly, a recent study using magnetic
source imaging revealed that the cortical representation of the
left hand digits of string players, in primary somatosensory
cortex was larger than that in nonmusician controls (56). Our
results, on the other hand, as well as Nudo et al.’s monkey data
(7) suggest that, rather than an enlargement of a specific
effector organ’s representation, training can result in a more
extensive representation of a trained sequence of movements,
i.e., a specific representation of skilled function rather than
body parts. This finding is of importance because the human
imaging data support the notion of M1 as a locus of the
long-term acquired representation of specific motor skills.

A variety of motor tasks can be conceptualized as consisting
of a serial sequence of simple movement components; the
skilled generation of a sequence of movements then would be
reduced to the problem of choosing the correct components in
the proper order, determining the time at which each com-
ponent movement is initiated and ensuring smooth continuity
from one component to the next. Such a scheme, however, may
not hold true in all cases of sequence performance (4, 41, 42).
For example, in piano playing, a particular key press is subject
to modification by succeeding elements of the given, well-
rehearsed musical phrase (coarticulation) (57). Such anticipa-
tory kinematic changes may explain why identical component
movements are differentially represented in M1 when ar-
ranged in a trained sequence vs. an untrained sequence.
Furthermore, there is evidence from monkeys showing that
fingers do not move independently of each other and that each
instructed movement is generated by combined activation of
several muscles, many acting on more than one digit (54).
Additionally, there is a large body of evidence demonstrating
the complex overlapping representations of movements in
maps of M1 (54). This evidence, together with the data of
Nudo et al. (7) suggesting the training-dependent evolution of
corepresentations of temporally correlated joint movements
by single M1 units, provides a possible neural basis by which
different sequences of individual digit movements can be
represented by different patterns of activity in M1. Thus, the
implementation of a sequence in M1 may be related to the

FIG. 2. Differential evoked responses in M1 to the trained vs. the
untrained (control) sequence. Training and performance during scan-
ning done with the left (nondominant) hand. (a and b) Emergence of
differential activation after 3 weeks of daily practice on the designated
training sequence. (c and d) Maintained differential activation 8 weeks
later with no additional training in the interval. Sagital sections
through the right hemisphere centered '35 mm from midline are
shown: right, anterior; top, dorsal aspect of the brain. The activity-
dependent blood-oxygenation-level-dependent signals evoked by the
trained sequence are shown in a and c. Those evoked by the untrained
sequence are shown in b and d. Z-score values are indicated by the
pseudo-color scale. A surface coil was used, which had the advantage
of providing enhanced signal-to-noise ratios, but at the cost of limiting
the data to M1 and surrounding areas contralateral to the performing
hand. Imaging parameters are given in ref. 6. The comparison is always
to the control sequence, performed within the same set. No direct
comparison is possible because of different shims and a somewhat
different placing of the subject in the magnet and of the surface coil
on the subject’s head. The area of evoked signal in M1 was consistently
larger in extent for the trained as compared with the untrained
sequence by 3 weeks of training and remained so 8 weeks later.
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representation of transitional movements (switching from one
digit to the other) and temporally correlated movements (7),
which would be dependent on the particular temporal ordering
of the component movements in the sequence (41, 58). This
order-specific aspect of the representation may be enhanced,
extended, and consolidated by practice.

Fast Learning

Although the evolution of a sequence-specific, differential
pattern of activation in M1 required extended practice over
several weeks to be completed, some important changes
occurred in the activity of M1 as early as the first imaging
session (6). These changes related to the effects of the interval
(first, X1, or second, X2) in which a given sequence was
performed within a 2-min set, rather than to the sequence
itself. We termed these interval-dependent signal modulations
the “ordering effects.” The difference in the extent of cortex
activated in the two performance intervals of different sets is
depicted in Fig. 3A. In the early sets of session 1, before any
training was given, a consistent ordering effect was found: the
performance of either sequence, irrespective of the sequence
type, resulted in a larger area of evoked response when
executed first (during interval X1) rather than second (during

interval X2) in the set. We interpreted this finding as a
habituation-like response across the 40-sec rest interval inter-
posed between X1 and X2 (6). By the latter part of the first
session, however, by which time each subject had typically
performed six 2-min experimental sets over the course of
approximately 30 min, this ordering effect was reversed. A
larger extent of M1 was activated by a given sequence when
executed second rather than first in the set. The interaction
between activation period (X1 vs. X2) and sets (early vs. late),
was significant [blocked two-factorial ANOVA, F(1,27) 5
4.946, P 5 0.035)] (Fig. 3A).

Is the switch in ordering effects a specific effect? That is, is
it specific to the sequences that were repeatedly performed
during the imaging session? To test this possibility, three
subjects were given a new, third sequence, again composed of
the same component movements (sequence C: 4, 3, 1, 2, 4; digit
numbers as in Fig. 1 A). This new sequence was introduced
after the switch in ordering effects had occurred, that is when
an enhanced response to the second sequence of the set was
established for both sequences A and B. In all three subjects,
the initial habituation-like pattern of the evoked fMRI re-
sponses to repetition returned on performing the new se-
quence, with a larger extent of activation during the first
interval compared with the second interval of the set (Fig. 3A).
Thus, the switch in ordering effect reflected the accumulating
motor experience gained when subjects repeatedly performed
the two sequences during the acquisition of the imaging data,
indicating that the switch may represent a learning effect
triggered by repetition of a motor sequence at a paced
fixed rate.

Consolidation of Motor Experience

If the switch in ordering effect reflects learning, then one
would expect a concurrent improvement in performance. We
previously have reported that performing the two sequences
during the initial imaging session resulted in a significant
improvement in both speed and accuracy (6). Moreover, the
pattern of enhanced response to repetition (a larger extent of
M1 activated in the second compared with the first perfor-
mance interval) was maintained during the second and third
imaging sessions even for the untrained sequence, which was
performed only during the weekly scanning sessions. This
finding suggests a rather long-lasting effect in M1: the change
in processing mode effected during the first scanning session
was retained for at least 1 week. Taken together, these findings
indicate that the accumulating motor experience gained
through the paced tapping of a given sequence during the
imaging session was, in itself, sufficient to trigger long-term
effects in M1’s representation of the sequence. The purpose of
the following experiments was to investigate whether a limited
amount of paced motor experience was sufficient to trigger
delayed gains in the speed and accuracy of performance of a
given sequence of movements. We were specifically interested
in exploring the possibility that some performance gains
become effective after practice has ended similar to the
delayed gains described for perceptual skill learning (6, 25,
32–34).

Twelve young adults (23–42 years old; seven females, five
males; all but one right-hand dominant) took part in these
experiments. Subjects were instructed to accurately tap, by
using their nondominant hand and with no visual feedback, the
two five-element sequences of finger-to-thumb opposition
movements depicted in Fig. 1 A, as in our original study (6).
Motor performance was recorded, during both testing and
training, with a video camera at a frame length of 40 ms.
Performance was tested before, immediately after, and then 24
hr after a single training session. During testing, as in our
earlier study (6), subjects were required to tap each sequence
as accurately and rapidly as possible over a test interval of 30

FIG. 3. Cortical and behavioral effects of short-term practice. (A)
Cortical effects. The ordering effects during the initial imaging session:
The mean difference in the extent of the evoked signal calculated as
the difference in the number of pixels in M1 in which the signal
changed above a threshold of Z 5 2 during the respective activation
intervals relative to rest, for each set (X2-X1, see text) during the two
activation intervals of the initial and late sets of the session as well as
when a new sequence was introduced is shown. Initial pattern:
Averaged data from five subjects from the first two sets of each subject
showing the initial ordering effect irrespective of sequence type, lesser
extent of M1 activated during the second compared with the first
interval. Late pattern: Averaged data from the two late sets in the
session (sets 6 and 7) of five subjects showing the reversed ordering
effect, irrespective of sequence type, larger extent of M1 activated
during the second compared with the first interval. New sequence:
Averaged data from three subjects (one set each) performing a new
sequence, ordering effect reverted to the naive, initial pattern with
smaller extent of M1 activated during the second compared with the
first interval. (Bars 5 SD.) (B and C) Behavioral effects. Speed (B)
and accuracy (C) of performance recorded during a test interval of 30
sec for two sequences (one randomly assigned to be trained or other
the untrained control) before training (before), after a few minutes of
externally paced performance of the designated trained sequence
(after), and 24 hr later, with no additional training in the interval. Data
from 12 subjects. An ANOVA showed that the effects of training, time
and the interaction time*training were significant [F(2,55) 5 33.06 P ,
0.001, F(1,55) 5 26.83 P , 0.001, F(2,55) 5 3.57 P , 0.03, respectively,
for speed; F(2,55) 5 29.58 P , 0.001, F(1,55) 5 47.73 P , 0.001,
F(2,55) 5 6.34 P 5 0.003, respectively, for errors].
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sec. Both speed (the number of sequences performed within
the test interval) and accuracy (the number of times an
out-of-sequence finger opposition movement was executed
within the test interval) were scored independently, from the
video recordings. In the training session, one of the sequences,
randomly chosen, was tapped at a rate of 2 Hz, paced by a
metronome, in six short training intervals of 40 sec each,
separated by 2–3 min of rest.

Motor performance for the two sequences, before, imme-
diately after, and on the day after training is shown in Fig. 3
B and C. Initial performance of the two sequences, in terms of
speed and accuracy, did not differ. Training, however, induced
a significant gain in both speed and accuracy for the trained
sequence. Moreover, on the next day, with no additional
training, a significant gain in both speed and accuracy, com-
pared with the immediate post-training performance level, was
found for the trained sequence only (Fig. 3 B and C).

Our results show that not all learning in a sequential finger
opposition task is concurrent with practice. A limited amount
of paced opposition movements was sufficient practice not
only to improve performance during the session but also to
initiate significant additional gains that affect performance by
the next day; apparently, some gains require time to become
effective and continue to develop after motor practice has
ended. The concurrent gain in speed and accuracy, is charac-
teristic of the acquisition of a new skill (44).

Delayed neuronal plasticity, which evolves hours after the
inducing experience, has been demonstrated in several studies
of the developing visual cortex in kittens (36, 37). These studies
showed that the changes in neuronal properties induced by
brief visual experience became effective, that is, consolidated,
only after time, several hours to several days, was allowed to
elapse. The notion of consolidation in these studies is consis-
tent with the distinction between the “induction” and the
“expression” and maintenance of plasticity suggested by stud-
ies of synaptic plasticity at the cellular and biochemical level
(10, 11). It is also consistent with the kinetics of memory
consolidation, in terms of its resistance to disruption, in animal
and cellular models of learning (39). Karni and Sagi (8) have
described similar delayed gains in the performance of adults
emerging a minimum of 6–8 hr after training in a simple visual
detection task. The term consolidation was suggested for the
process, presumably initiated during the practice session,
which underlies the improvement of performance hours after
the training experience was terminated, and results in an
enduring memory of the skill. Recently, while training subjects
on moving a manipulandum against a force-field, Brashers-
Krug et al. (20, 39) found evidence for an ongoing process of
consolidation after training for one task condition was termi-
nated. The introduction of a second task condition within a
time window of several hours after the initial training dis-
rupted long-term (overnight) improvement on the first task.
Moreover, their data show that training not only results in
within session (fast) gains, but also, provided enough time was
allowed for the consolidation phase, in additional gains that
are only apparent by the next day. Similar delayed gains in
performance after a latent consolidation phase also have been
described for a rotor pursuit task (J. Travis quoted in ref. 40).
Altogether, these results indicate that human motor memory
continues to evolve after the training session, and with the
passage of time is transformed into a long-term trace. Fur-
thermore, the data establish an important parallel between the
time course of motor skill learning and perceptual learning and
suggest the idea that the time course of skill learning may
reflect the time constants of basic neuronal mechanisms of
memory storage that are shared by different cortical repre-
sentations in the adult brain.

Functional Stages in Skill Learning

Although the fractionation of skill learning into only two
discrete phases is most likely an oversimplification (11), it
provides an important conceptual framework for describing
and accounting for the human skill learning data (6, 8, 22, 39).
Our imaging data suggest that the acquisition of skilled motor
performance occurs in two distinct phases in M1. First, a
within-first-session switch in the representation of the repeat-
edly performed sequences of movements from a habituation-
like decrease to an increase in the extent of motor cortex
activated by a given sequence of repeated movements; and
second, after about 3 weeks of training, the emergence of an
enlarged, differential representation of the trained as com-
pared with the untrained sequence of movements. Both stages
of sequence learning are experience specific. The switch in
ordering effects, or fast learning, occurs only for those se-
quences that have been repeated a critical number of times in
the session, and it is correlated with a specific, significant gain
in performance occurring within the session. The emerging,
more extensive representation of the trained sequence of
movements in M1 was a correlate of highly specific gains in
performance that were incrementally acquired over a few
weeks of daily practice (slow learning).

The switch in M1 processing mode may constitute an
important step in initiating subsequent experience-dependent
changes in M1. The imaging data show that the switched
ordering effect that occurred in M1 late in the first imaging
session was maintained, for the designated control sequence,
for at least 1 week during which the sequence was not
performed. This is not to say that the switch in M1 processing
mode, and much of the behavioral effects that constitute fast
learning, are products of major changes principally occurring
in M1 within the time frame of a single session. The switch in
ordering effects may reflect neural changes occurring in other
parts of the distributed motor system (45, 47–52, 59–60).
Psychophysical data from perceptual (8) and motor (39)
learning tasks suggest that fast learning is mediated, at least in
part, by brain regions distinct from those that subserve slow
learning. It has been argued, based on electrophysiological
data from monkeys, that brain regions active during the
acquisition of a motor skill do not necessarily correspond to the
regions that eventually will store the memory (4, 61). In
humans, there is evidence from functional brain imaging
studies that distinct brain areas are differentially activated
during initial, naive performance compared with subsequent
performance as learning proceeds both within a session [see
for example Buckner (66) and Petersen (67) in this issue of the
Proceedings] and across consecutive sessions (60, 62).

One should note, that in our study (6), the extent of
activation in M1 for either sequence did not increase signifi-
cantly during the initial scanning session. The learning related
changes in M1 that occurred during the first session were
related to the ordering effects within a time window of 40 sec.
A number of positron emission tomography (PET) studies
have examined changes in brain activations occurring within a
single session as a consequence of practice in motor and
sensory-motor tasks (45, 47–52). Although some studies have
suggested that, as learning proceeded within the session, blood
flow in M1 increased (47, 49), no significant changes in blood
flow have been found in M1 when the rate of movements in the
trained and untrained conditions were kept the same (50, 52).
A recent PET study in which movement rate was controlled
(45), as well as a transcranial magnetic stimulation study (46),
found increased activity in M1 as learning progressed but only
when subjects had no previous implicit knowledge of the
sequence of finger movements. When explicit knowledge of
the sequence was allowed to develop no significant learning-
related M1 changes were found. However, in contrast to the
M1 findings, several PET studies have found a consistent
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decrease in the activation of the cerebellum and prefrontal
cortex (with conflicting observations concerning premotor
cortex) as a function of practice within a session (45, 47–52,
60).

As the decrease in activation in areas projecting to M1
occurred over a similar time window as the switch in ordering
effects that we observed in M1 within the first session, we
proposed that this switch reflects changes in modulatory inputs
to M1. This initial phase in the acquisition of the skill may be
conceptualized as the setting up of a sequence-specific routine
(6). Our working hypothesis is that, initially, the evoked
response in M1 relates to the component movements of the
sequences, which being identical, exert a smaller, i.e., habitu-
ated, response on repetition across a time window of 40 sec. By
the end of the session, however, after the two sequences each
have been repeated a few tens of times, the switch in ordering
effect reflects the fact that a given sequence of movements
constitutes a special entity of behavioral significance: it is
consistently performed as a sequence rather than as unordered
component movements. An experience-dependent change
from representation of component movements in an explicit
sequence to a representation, rather “automatic” (45, 48, 60),
in M1 of the sequence as a unitary motor plan can be related
to the decrease of activation in the cerebellum and prefrontal
cortex through a decreasing need for movement by movement
internal monitoring.

Although important changes occur on a short time scale, our
results clearly demonstrate that skilled performance of the
trained sequence is not the product of a single training session.
Both the imaging and the behavioral data show that the initial
changes in ordering effects and the gains in performance
acquired during the first session were retained after the session
and then consolidated; however, it took about 3 weeks of
practice on a daily basis for performance to approach asymp-
tote. The correlate of this acquired proficiency was an enlarged
representation of the trained, relative to the untrained, se-
quence in M1. The emergence of this differential in the evoked
fMRI signal corresponded in time to the attainment of max-
imal near asymptotic performance on the trained sequence.
This, however, may be a result of a limitation in the sensitivity
of our measurement, and it remains to be seen whether a
differential representation of the trained sequence begins to
evolve even earlier than the attainment of asymptotic perfor-
mance. Nevertheless, our results have provided what we be-
lieve is direct evidence that long-term motor training can result
in significant experience-dependent reorganization in the
adult human motor cortex. These data provide an important
link with a growing body of data in the nonhuman mammalian
brain of representational changes associated with the acqui-
sition of skills.

Two main mechanisms have been proposed for the changes
induced in motor and sensory representational maps as a
function of experience: (i) the transcription dependent im-
provement and growth of new connections and synapses (e.g.,
34, 63); and (ii) the unmasking, or disinhibition, of previously
existing lateral connections between neurons within a repre-
sentational domain through internal or external modulating
inputs (3, 30, 64). The latter mechanism can induce changes on
a short time scale and may subserve fast learning; the former
has been invoked to explain the delayed, time-dependent
nature of developmental cortical plasticity and cortical reor-
ganization compensating for injury and subserving learning.
These mechanisms are not mutually exclusive, however, and
one may conjecture that the pre-existing lateral connections
between local populations of neurons, whose outputs result in
different sets of movements, provide a basic network that
short-term experience may unmask and subsequent practice
may selectively improve (63, 65). Thus, our results support the
idea that adult skill motor learning is contingent on the

functional architecture of the motor system but, at the same
time, modifies it.

Conclusions

The human imaging data together with the behavioral mea-
surements of the effects of training over time lead to three
important insights into the neurobiological substrates of skill
learning in the adult brain. First, practice can set in motion
neural processes that continue to evolve many hours after
practice has ended. Thus, even a limited training experience
can induce behaviorally significant changes in brain activity,
and initiate important long-term effects that may provide the
basis for the consolidation of the experience. Second, although
many brain areas may be important in the initial stages of
acquiring a new skill, an important substrate of skill profi-
ciency can be an enlarged, better representation within the
earliest level of processing in which a differential representa-
tion of those experience parameters that are critical for the
performance of the task is available. This may be a basis for the
specificity of procedural knowledge for basic parameters of the
training experience. It is very likely the case that different parts
of the distributed motor system, including subcortical struc-
tures, take part and subsequently represent acquired skills.
Nevertheless, the data are consistent with the proposal that
local changes in discrete representations subserve the long-
term memory of skills. Third, motor skill learning requires
time and has two distinct phases, analogous to those subserving
perceptual skill learning. An initial, fast improvement phase
(“fast learning”) is followed by a slowly evolving, post-training
incremental performance gains (“slow learning”). The hypoth-
esis is that fast learning involves processes that select and
establish an optimal routine or plan for the performance of the
given task. Slow learning, on the other hand, may reflect the
ongoing long-term, perhaps structural, modifications of basic
motor modules; it may be implemented through time-
dependent strengthening of links between motor neurons as a
function of correlated activity, and their recruitment into a
specific representation of the trained sequence of movements.
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